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1 Proper Maps

Proper maps make several appearances in our work. Since they can be very powerful when
recognised we include a few results as background. A general reference for this section is
Bourbaki [1], §1, Chapter 10.

Definition 1 A continuous map f : X → Y is said to be proper if it is closed, and if for
each y ∈ Y the inverse image f−1(y) ⊆ X is compact. �

Lemma 1.1 If f : X → Y is proper and K ⊆ Y is compact, then f−1(K) ⊆ X is compact.

Proof It will suffice to show that if {Ci ⊆ f−1(K)}i∈I is a family of closed subsets with⋂
I Ci = ∅, then there is finite subfamily whose intersection is already empty. To this end we

consider the family {f(Ci) ⊆ K}I . Since f is proper this is a collection of closed subsets of
K ⊆ Y whose total intersection is empty. Since K is compact, there must be finitely many
of these sets, say, f(C1), . . . , f(Cn) such that f(C1)∩ · · · ∩ f(Cn) = ∅. But this tells us that
f(C1 ∩ · · · ∩ Cn) = ∅, and the only way this can happen is if C1 ∩ · · · ∩ Cn = ∅, which was
what we needed to show.

Proposition 1.2 A map f : X → Y is proper if and only if for each space Z, the map
f × idZ : X × Z → Y × Z is closed.
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Proof Assume that f is proper. Let Z be a space and let C ⊆ X × Z closed. We must
show that Q = (f × idZ)(C) ⊆ Y × Z is closed. i.e. that any given (y, z) ∈ Qc has an
open neighbourhood contained in Qc. If f−1(y) is empty, then we are done, for the image
f(X) is closed in Y by assumption, and so a suitable neighbourhood for (y, z) can easily be
produced.

So assume that f−1(y) is nonempty. It is compact by assumption, and this means that
f−1(y)×{z} is compact subset of X×Z contained in the (open) complement of C. Appealing
to the Tube Lemma we can thus find open sets U ⊆ X and V ⊆ Z such that f−1(y)×{z} ⊆
U × V ⊆ Cc. Then

((X \ U)× Z) ∪ (X × (Z \ V )) ⊆ X × Z (1.1)

is a closed subset containing C. But the image of this set by f × idZ is then a set

(f(X \ U)× Z) ∪ (f(X)× (Z \ V )) ⊆ X × Z, (1.2)

which contains Q and is seen to be closed by inspection. Since f(X\U) ⊆ Y does not contain
y, and Z \ V does not contain z, the complement of (1.2) is then an open neighbourhood of
(y, z) which is disjoint from Q.

For the converse statement, assume that f × idZ is closed for each space Z. By taking
Z = ∗ we see that f is closed, so we need only show that f−1(y) is compact for each
y ∈ Y . To this end we first prove that if B ⊆ Y is any subspace, then the restriction
g = f | : f−1(B) → B also has the property that g × idZ : f−1(B) × Z → B × Z is closed
for any space Z. Indeed, if C ⊆ f−1(B) × Z is closed, then there is some closed subset

C̃ ⊆ X × Z such that C = C̃ ∩ (f−1(B)× Z). We have

(g × idZ)(C) = (f × idZ)(C̃) ∩B (1.3)

and since (f × idZ)(C̃) is closed in Y × Z, it follows that (g × idZ)(C) is closed in B.
A consequence of this observation is that if y ∈ Y is any point, then for any space Z,

the restriction f−1(y) × Z → {y} × Z is closed. But this is a common characterisation of
compactness, so it follows from this that f−1(y) is compact.

Proposition 1.3 Let f : X → Y be a map from a Hausdorff space X to a locally compact
Hausdorff space Y . Then f is proper if and only if each compact subset K ⊆ Y has a compact
preimage under f . If f is proper, then f is locally compact.

Example 1.1

1) An injective map f : X → Y is proper if and only if it is closed if and only if it is a
closed embedding.

2) Any map f : X → Y from a compact space X to a Hausdorff space Y is proper.

3) K → ∗ is proper if and only if K is compact.

4) More generally, for any space X, the projection prX : X × K → X is proper if and
only if K is compact. (Actually this is a consequence of Proposition 1.2 and the last
example.)

5) If f, g are both proper, then f × g is proper. More generally the product of any family
of proper maps is proper.
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2 Local Compactness

Many different definitions of local compactness appear in the literature. The reader is advised
to take care to pay attention to the definition that any given author adopts. The following
is that which we shall adhere to in these notes.

Definition 2 A space X is said to be locally compact at a point x ∈ X if each neighbour-
hood U ⊆ X of x contains a compact neighbourhood of x. The space X is said to be locally
compact if it is locally compact at each of its points. �

If X is locally compact, then each of its points has a compact neighbourhood. Although
this is often enough to be useful, the implication is not reversible. There are compact spaces
which are not locally compact, and locally compact spaces which are not compact, although,
of course, each point of a compact space has a (closed) compact neighbourhood. We give
examples in 2.1 which demonstrate that these notions are distinct.

Hausdorff spaces, on the other hand, are more flexible when it comes to local compactness,
and most of the common definitions tend to be in agreement for these spaces.

Proposition 2.1 The following statements are equivalent for a Hausdorff space X.

1) Every point of X has a compact neighbourhood.

2) Every point of X has a closed compact neighbourhood.

3) X is locally compact.

4) If U ⊆ X is a neighbourhood of a point x ∈ X, then x has a neighbourhood V ⊆ U
such that V is compact and V ⊆ U .

5) Each point x ∈ X has a neighbourhood with compact closure.

6) Each point x ∈ X has a neighbourhood base consisting of subsets with compact closure.

7) Each point x ∈ X has a neighbourhood base consisting of compact subsets.

Proof Clearly 4) ⇒ 3) ⇒ 2) ⇒ 1) and 4) ⇒ 7) ⇒ 6) ⇒ 5) so we need only prove two
implications.

5) ⇒ 4) Let x ⊆ X and U ⊆ X an open neighbourhood of x. Choose an open neigh-
bourhood V of x with V compact. Then V \ U is a closed set not containing X. Since V
is compact Hausdorff there exist open sets W1,W2 ⊆ X with W1 ∩W2 ∩ V = ∅ such that
x ∈ W1 and V \ U ⊆ W2 ∩ V . Thus W1 ∩ V ⊆ V \W2 ⊆ V ∩ U ⊆ U . Then W1 ∩ V is an
open neighbourhood of x with compact closure W1 ∩ V ⊆ W 1 ∩ V ⊆ U .

1) ⇒ 5) If x ∈ X there is a compact K and open U such that x ∈ U ⊆ K ⊆ X. Then
U ⊆ K is compact and x ∈ U ⊆ U .

Corollary 2.2 A compact Hausdorff space is locally compact.

Local compactness is not hereditary in general. However we can show that it is inherited
by open and closed subspaces, and we can characterise the locally compact subspaces of a
given Hausdorff space.
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Proposition 2.3

1) If X is locally compact and C ⊆ X is closed, then C is locally compact in the subspace
topology.

2) If X is locally compact and U ⊆ X is open, then U is locally compact in the subspace
topology.

3) If X is Hausdorff and A ⊆ X is locally compact in the subspace topology, then A is
locally closed in X1.

4) If X is locally compact Hausdorff, then a subspace A ⊆ X is locally compact in the
subspace topology if and only if it is locally closed.

Proof 1) Let V ⊆ C be an open neighbourhood of a point x ∈ X. Then there is an open

Ṽ ⊆ X such that C ∩ Ṽ = V . By local compactness we can find an open U ⊆ X and a
compact K ⊆ X such that x ∈ U ⊆ K ⊆ Ṽ . Then C ∩U ⊆ C ∩K ⊆ C ∩ Ṽ = V , so we will
be done if we can show that C ∩K is compact in C. Let {Wi ⊆ C}i∈I be an open covering

of C ∩K in C. Then there are open sets W̃i ⊆ X such that C ∩ W̃i = Wi and {W̃i}I covers

C ∩ K in X. Then {K ∩ W̃i}I covers C ∩ K in K, and since C ∩ K is closed and hence

compact in K, we can find finitely many such sets C ∩ W̃1, . . . , C ∩ W̃n which cover C ∩K
in K. Then W̃1, . . . , W̃n covers C ∩K in X and W1, . . . ,Wn covers C ∩K in C. Thus C ∩K
is compact in C.
2) If x ∈ U , then it has a neighbourhood K ⊆ U such that K is compact in X. But this
implies that K is compact in U .
3) It suffices to show that each point x ∈ A has an open neighbourhood U ⊆ X such that
U ∩ A ⊆ A. Proceed as follows. By local compactness, the point x ∈ A has an open
neighbourhood U ⊆ X such that U ∩ A is compact in A (cf. Pr. 2.1). Then U ∩ A is also
compact in X, and hence also here closed. It follows that U ∩ A ⊆ U ∩ A, and this implies

that U ∩ A ⊆ U ∩ A ⊆ U ∩ A ⊆ A.
4) One direction follows from 3), the other from 1).

Arbitrary coproducts of locally compact spaces are locally compact, but some care must
be taken with products. The following lemma will be useful in making a complete statement.

Lemma 2.4 If f : X → Y is a continuous open surjection and X is locally compact, then
Y is locally compact.

Proof Let V ⊆ Y be a neighbourhood of a point y ∈ Y . Then f−1(V ) contains a compact
neighbourhood K of any given point x ∈ f−1(y). The image f(K) ⊆ Y is then a compact
set containing y, and since f is open it contains an open neighbourhood of it.

Proposition 2.5 Let {Xi}i∈I be a family of nonempty spaces indexed by an arbitrary set I.

1A ⊆ X is locally closed if and only if A = C ∩ U , where C ⊆ X is closed and U ⊆ X is open. It
follows that A ⊆ X is locally closed if and only if each point x ∈ A has an open neighbourhood U ⊆ X in
X such that U ∩A is closed in U . We can also show that A ⊆ X is locally closed if and only if A is open in
its closure A.
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1) The coproduct
⊔
i∈I Xi is locally compact if and only if each Xi is locally compact.

2) The product
∏

i∈I Xi is locally compact if and only if each Xi is locally compact and
all but finitely many are compact.

Proof 1) The forwards implication follows from Pr. 2.3 and the backwards implication is
clear.
2) Assume that

∏
I Xi is locally compact. Since the projections are open surjections, we get

from Le. 2.4 that each Xi is locally compact. If U ⊆
∏
I Xi is open, then by assumption

there are V ⊆ K ⊆ U , with K compact and V a basic open set. Since the projections map
V surjectively onto all but finitely many of the Xi, they also map K onto finitely many of
the Xi. It follows from this that all but finitely many of the Xi must be compact.

Let us now prove the converse. It is clear that a finite product of locally compact spaces
is locally compact. Since an arbitrary product of compact spaces is compact, we will thus
be done if we can show that an arbitrary product of compact, locally compact spaces is
locally compact. So assume that all the Xi are both compact and locally compact. It will be
enough to show that any basic open neighbourhood U of a given point x ∈

∏
I Xi contains

a compact neighbourhood of x.
Write U as a finite intersection

⋂n pr−1
i (Ui), where Ui ⊆ Xi is open and pri :

∏
I Xi → Xi

is the projection. Since each Xi is locally compact we can find a compact Ki ⊆ Ui which
contains both pri(x) and an open neighbourhood of it. Since each Xi is compact, the
projections pri are proper, and this implies that pr−1(Ki) ⊆

∏
I Xi is compact. Then⋂n pr−1

i (Ki) is the desired compact neighbourhood of x.

Corollary 2.6 Finite products and coproducts of locally compact spaces are locally compact.

Notice in particular that arbitrary products of compact Hausdorff spaces are locally compact.
Finally here is a useful but somewhat unexpected application of theory developed above.

We give a direct proof here, but a more satisfying proof may be obtained later once some
aspects of the compact-open topology have been studied.

Proposition 2.7 Let X be locally compact and q : Y → Z a quotient map. Then q × idX :
Y ×X → Z ×X is a quotient map.

Proof We need to show that if U ⊆ Z ×X is such that (q × idX)−1(U) ⊆ Y ×X is open,
then U must be open. To this end assume given a point (z, x) ∈ U , and choose a compact
neighbouhood K ⊆ X of x such that {z} ×K ⊆ U .

Then W = {y ∈ Y | {y}×K ⊆ V } = {y ∈ Y | q(y)×K ⊆ (q× idX)−1(U)} is nonempty,
and by application of the Tube Lemma we can check that it is open. Direct inspection shows
that W is saturated with respect to q, and from this we get (z, x) ∈ q(W )×K ⊆ U . Since
K contains an open neighbourhood of x we are done.

We end this section by collecting a set of examples and counterexamples which display
some of the subtleties discussed previously.

Example 2.1
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1) Rn is locally compact but not compact.

2) Any discrete space is both locally compact and Hausdorff, but is compact if and only
if it is finite.

3) Q is Hausdorff but not locally compact, since any neighbourhood of any point contains a
Cauchy sequence with no convergent subsequent (alternatively Q is not locally closed in
R). In fact this argument show that no point of Q even has a compact neighbourhood.
Since Q ⊆ R we see that local compactness is not inherited by arbitrary subspaces.

4) (R× (0,∞)) ∪ {(0, 0)} ⊆ R2 is Hausdorff and locally compact at each point whose
second coordinate is positive. However this space fails to be locally compact at the
origin, which has no compact neighbourhood.

5) Each point in the the one-point compactification Q∞ of Q has a closed compact neigh-
bourhood, since Q∞ itself is compact. However Q∞ is not locally compact, since its
open subspace Q is not. Note that Q∞ is not Hausdorff, since Q is not locally compact.

6) The Hilbert space `2 of square-summable real sequences is not locally compact. (It
suffices to show that the origin has no compact neighbourhood K. Assume it does.
Then there is an ε > 0, such that Bε ⊆ K, where Bε is the closed ε-ball around the
origin. But this implies that Bε is compact, and this is a contradiction.)

7)
⊔

N S
1 is locally compact,

∏
N S

1 is compact Hausdorff, while the wedge point in
∨

N S
1

does not even have a compact neighbourhood.

8) A quotient of a locally compact space need not be locally compact. For instance the
quotient space X = R2/(R× 0) is not locally compact at the coset [R× 0].

9) Any smooth manifold is locally compact. More generally, any locally euclidean space
is locally compact.

10) A CW complex is locally compact if and only if it is locally finite.

3 The Compact-Open Topology

For spaces X, Y let Top(X, Y ) denote the set of continuous maps X → Y , and for subsets
A ⊆ X and B ⊆ Y put

W (A,B) = {f ∈ Top(X, Y ) | f(A) ⊆ B} ⊆ Top(X, Y ). (3.1)

The following is clear.

Lemma 3.1 Let X, Y be spaces and {A,Ai ⊆ X}i∈I, {B,Bj ⊆ Y }j∈J families of subsets.
The following equalities hold.

1) W (
⋃
I Ai, B) =

⋂
IW (Ai, B)

2) W (A,
⋂
J Bj) =

⋂
J W (A,Bj)
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3)
⋂
I,J W (Ai, Bj) ⊆ W (

⋃
I Ai,

⋃
J Bj)

The sets W (K,U) cover Top(X, Y ) as we let K ⊆ X run over all compact subsets and
U ⊆ Y run over all open subsets. Thus these sets are suitable for generating a topology, and
the lemma shows they have good properties to do so.

Definition 3 Let X, Y be spaces. The compact-open topology on Top(X, Y ) is that
generated by the subbasis

{W (K,U) ⊆ Top(X, Y ) | K ⊆ X compact, U ⊆ Y open}. (3.2)

We denote by C(X, Y ) the resulting space. �

Unfortunately there is a baffling array of different topologies on Top(X, Y ) that people study,
and there is rarely a ‘correct’ one to adopt. The compact-open topology turns out to one of
the more useful topologies when we impose some (local) compactness conditions. Since many
of the spaces we shall ultimately be interested in shall be either compact CW complexes or
manifolds - and so shall be locally compact - we shall make exclusive use of it.

To motive the following let us put aside the compact-open topology for a moment and
assume that we have devised a similar scheme which assigns to each set Top(X, Y ) a topology
τ = τX,Y . If Cτ (X, Y ) denotes the resulting space, then here is a list of some properties which
we would consider desirable for these topologies to possess.

• Functoriality: The assignment (X, Y ) 7→ Cτ (X, Y ) should define a functor Top×Top→
Top.

• Continuity of composition: Cτ (Y, Z) × Cτ (X, Y ) → Cτ (X,Z), (g, f) 7→ g ◦ f , should
be a continuous map.

• Adjunction: For fixed X, the functor Y 7→ Cτ (X, Y ) should be right adjoint to Z 7→
Z ×X.

• Compatibility with homotopy: The homotopy type of Cτ (X, Y ) should depend only
on the homotopy types of X, Y .

In practice asking for all these properties to hold is too much. The third item in particular
is delicate. As we will see, the compact-open topology does satisfy the first and last listed
properties, but in general the second and third properties fail. We will, however, be able to
identify suitable conditions under which we can recover some useful statements.

We begin by studying functorality and composition. The first of these is immediate, but
the second requires a little more work.

Lemma 3.2 Let f : X → Y and g : Y → Z be maps between spaces X, Y, Z. Then the
induced functions

g∗ : C(X, Y )→ C(X,Z), h 7→ h ◦ f (3.3)

and
f ∗ : C(Y, Z)→ C(X,Z), h 7→ h ◦ f (3.4)

are continuous.
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Proof Let K ⊆ X be compact and V ⊆ Z open. Then

(g∗)
−1(W (K,V )) = W (K, g−1(U)) (3.5)

(f ∗)−1(W (K,V )) = W (f(K), V ). (3.6)

Addendum Keeping the notation and assumptions of Proposition 3.6 we can show:

1) If g is an embedding, then so is g∗.

2) If f is surjective, then f ∗ is injective. If moreover f is proper, then f ∗ is an embedding.

Clearly idY ∗ = idC(X,Y ) and we have equalities

(h ◦ g)∗ = h∗ ◦ g∗ (f ◦ k)∗ = k∗ ◦ f ∗ (3.7)

whenever they make sense. This gives us

Corollary 3.3 The assignment

Top× Top C(−,−)−−−−→ Top, (X, Y ) 7→ C(X, Y ). (3.8)

defines a functor.

Unfortunately this does not lead to a topological enrichment of our category. For example,
the operation of composition may fail to be continuous.

Proposition 3.4 Let X, Y, Z be spaces. If Y is locally compact, then the composition map

◦ : C(Y, Z)× C(X, Y )→ C(X,Z), (g, f) 7→ g ◦ f, (3.9)

is continuous.

Proof We show that ◦ is continuous at any point (g, f) ∈ C(Y, Z) × C(X, Y ). To begin
choose a compact K ⊆ X and an open V ⊆ Z such that g ◦ f ∈ W (K,V ) ⊆ C(X,Z).
Using the continuity of g and the local compactness of Y , for each y ∈ f(K) we can find
neighbourhoods Uy, Ly ⊆ Y such that Uy is open, Ly is compact, Uy ⊆ Ly, and g(Ly) ⊆ V .
Since the Uy cover the compact set f(K), we can find finitely many U1, . . . , Un such that
f(K) ⊆ U =

⋃n
i=1 Ui. If L1, . . . , Ln are the corresponding compact sets, then L =

⋃n
i=1 Li is

compact, U ⊆ L, and g(L) ⊆ V .
Now (g, f) ∈ W (L, V )×W (K,U), and if (g′, f ′) ∈ W (L, V )×W (K,U) is another pair,

then
g′(f ′(K)) ⊆ g′(U) ⊆ g′(L) ⊆ V (3.10)

which shows that
◦ (W (L, V )×W (K,U)) ⊆ W (K,V ) (3.11)

completing the proof.
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Moving onwards, let us now consider conditions under which the functors (−) × Y and
C(Y,−) form an adjoint pair. Notice that if the functor (−)× Y has a right adjoint at all,
then it must necessarily send a space Z to the set Top(Y, Z) endowed with some topology.
This can be seen by evaluating (−)× Y at the one-point space.

In general (−)× Y will not have a right adjoint. For instance, when Y = Q it does not
[3]. Although an answer to the full existence question is beyond the scope of these notes, we
will be able to locate a good class of spaces Y for which this right adjoint both exists, and
coincides with C(Y,−) in the compact-open topology. The class we have in mind will turn
out to be that of the locally compact spaces in the sense of Def. 2.

So, reformulating our question it becomes: for which Y is continuity of a map X×Y → Z
equivalent to continuity of its adjoint X → C(Y, Z) for any given spaces X,Z? Our partial
answer to this will make use of the following tool. For spaces X, Y define a set-valued
function ev = evX,Y by setting

ev : C(X, Y )×X → Y, (f, x) 7→ f(x). (3.12)

In general this map is not continuous. We call ev the evaluation map, and next study
conditions which guarantee its continuity.

Lemma 3.5 If X, Y are spaces with X nonempty, then the map

c− : Y → C(X, Y ), y 7→ [cy : x 7→ y] (3.13)

is an embedding.

Proof Clearly c is an injection of sets. It is also continuous, since if K ⊆ X is compact and
U ⊆ Y is open, then c−1(W (K,U)) = U . Now, if U ⊆ Y is open and x ∈ X, then

c(U) = W ({x}, U) ∩ c(Y ) (3.14)

and this shows that c is an embedding, since W ({x}, U) ⊆ C(X, Y ) is open.

Addendum If X is nonempty and Y is Hausdorff, then c : Y → C(X, Y ) is a closed
embedding.

Corollary 3.6 If X is locally compact and Y is any space, then the evaluation map

ev : C(X, Y )×X → Y, (f, x) 7→ f(x) (3.15)

is continuous.

Proof The composition map

◦ : C(X, Y )× C(∗, X)→ C(∗, Y ) (3.16)

is continuous according to Proposition 3.4. According to Lemma (3.5), there are homeomor-
phisms

cX : X
∼=−→ C(∗, X), cY : Y

∼=−→ C(∗, Y ) (3.17)

and under these identifications, the map (3.16) is exactly the evaluation (3.15).
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Given a map f : X × Y → Z we define its right adjoint to be the function of sets

f# : X → C(Y, Z), x 7→ [f#(x) : y → f(x, y)]. (3.18)

Similarly, given a map g : X → C(Y, Z) we define its left adjoint to be the function of sets

g[ : X × Y → Z, (x, y) 7→ g(x)(y). (3.19)

In general it will be clear which of left or right adjoint we mean, and we will just say adjoint
to mean either. We stress that the adjoints need not be continuous. However, they do behave
well with respect to composition.

Lemma 3.7 Let f : X ×Y → Z and g : X → C(Y, Z) be given. If h : X ′ → X, k : Y ′ → Y
and l : Z → Z ′ are maps, then

(lf(h× k))# = l∗h
∗f#h : X ′ → C(Y ′, Z ′) (3.20)

(l∗k
∗gh)[ = lg[(h× k) : X ′ × Y ′ → Z ′. (3.21)

In particular, if h, k, l are continuous, then (lf(h× k))# is continuous if f# is continuous,

and (l∗gh)[ is continuous if g[ is continuous.

More generally we have the following useful statements.

Proposition 3.8 Let X, Y, Z be spaces. If f : X × Y → Z is continuous, then the right
adjoint

f# : X → C(Y, Z) (3.22)

is also continuous. If Y is locally compact and g : X → C(Y, Z) is continuous, then the left
adjoint

g[ : X × Y → Z (3.23)

is also continuous.

Proof We show that f# is continuous at any given point x ∈ X. For this it is sufficient to
show that if K ⊆ Y is compact and V ⊆ Y open such that f#(x) ∈ W (K,V ) ⊆ C(Y, Z),
then there is an open neighbourhood U ⊆ X of x such that f#(U) ⊆ W (K,V ).

Now, f−1(V ) ⊆ X × Y is open, and {x} × K ⊆ f−1(V ). Let U ⊆ X be any open
set satisfying {x} × K ⊆ U × K ⊆ f−1(U). Note that such a set always exists according
to the Tube Lemma. Then for each x′ ∈ U we have f#(x′)(K) ⊆ V , which implies that
f#(U) ⊆ W (K,V ), which was exactly what we needed to show.

For the second statement we write g[ as the composition

g[ : X × Y g×1−−→ C(Y, Z)× Y ev−→ Z. (3.24)

If Y is locally compact, then this is continuous by Proposition 3.6.
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For any spaces X, Y, Z be spaces we get from Proposition 3.8an injection of sets

(−)# : Top(X × Y, Z)→ Top(X,C(Y, Z)), f 7→ f#. (3.25)

Here injectivity follows, since if f, g : X × Y → Z have f# = g#, then f(x, y) = g(x, y) for
all (x, y) ∈ X×Y , so that f = g. In general this map fails to be bijective, since a given map
h : X → C(Y, Z) may have a discontinuous adjoint h[ : X×Y → Z. On the other hand, the
proof of 3.8 shows that h[ will be continuous whenever ev : C(Y, Z)×Y → Z is. Combining
this with Le. 3.5, we record the following.

Proposition 3.9 For spaces X, Y, Z the function

(−)# : Top(X × Y, Z)→ Top(X,C(Y, Z)), f 7→ f# : x 7→ [y 7→ f(x, y)] (3.26)

is an injection of sets, which is natural in each variable separately. If the evaluation map
evY,Z : C(Y, Z) × Y → Z, is continuous, then (−)# is a bijection of sets, natural in X and
Z, and

(−)[ : Top(X,C(Y, Z))→ Top(X × Y, Z), g 7→ [g[ : (x, y) 7→ g(x)(y)] (3.27)

is its set-theoretic inverse. In particular these functions are inverse bijections when Y is
locally compact.

It is not necessary for Y to be locally compact for ev : C(X, Y )× Y → Z to be continuous.
Indeed, Hofmann and Lawson [4] have constructed a non-locally compact space for which it
is. The full story involves something we will not define which is called core compactness [2]
which generalised local compactness.

On the other hand, here is an example to demonstrate that some form of compactness
conditions are clearly necessary.

Example 3.1 (C(Q, I)) Take X = Q, Y = I and consider the space C(Q, I) of continuous
maps Q→ I in the compact-open topology. In the subspace topology Q ⊆ R, the rationals
are not locally compact, so in particular Proposition 3.6 does not guarantee that the evalu-
ation map ev : C(Q, I) × Q → I is continuous. In fact this map is not continuous, and we
can prove this by showing that it is not continuous at (c1, q), where c1 : Q → I, x 7→ 1, is
the constant map at 1 and q ∈ Q is any point.

Indeed, if ev is continuous at (c1, q), then there must be a basic open neighbourhood
B ⊆ C(Q, I) of c1, and an open neighbourhood N ⊆ Q of q such that ev(B×N) is contained
in (0, 1]. Assume this is so and choose compact K1, . . . , Kn ⊆ Q and open U1, . . . , Un ⊆ I
such that B = ∩i=1,...,nW (Ki, Ui).

Then K =
⋃
i=1,...,nKi is compact, and in particular closed in Q. This implies that N

cannot be contained inside K, for if it were it would have compact closure N , and this would
imply that N would be closed in R, which clearly cannot be true.

Thus there is a point x ∈ N \ K, and since Q is completely regular, also a continuous
function f : Q → I with f(x) = 0 and f(K) = {1}. Clearly f ∈ B. However here
we encounter a problem, for this implies that ev−1((0, 1]) does not contain B × N since it
does not even contain (f, x). Thus we have arrived at a contradiction, and it follows that
ev : C(Q, I)×Q→ I cannot be continuous at (c1, q). �
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3.1 Further Properties of the Compact-Open Topology

In this section we collect some results on the compact-open topology which are frequently
useful to know. While we include statements like Le. 3.11 only for completeness, we will
assume results like Pr. 3.12 to be known.

Proposition 3.10 If X, Y are spaces and Y is Ti for i ∈ {0, 1, 2, 3}, then C(X, Y ) is Ti.

Proof (T0, T1) Let f 6= g ∈ C(X, Y ). Then there exists x ∈ X such that f(x) 6= g(x). If
Y is T0, then we can find an open subset U ⊆ Y with, say, f(x) ∈ U and g(x) 6∈ U . Then
f ∈ W ({x}, U) and g 6∈ W ({x}, U), which proves that C(X, Y ) is T0. If we assume instead
that Y is T1, then the same argument shows that C(X, Y ) is T1.
(T2) Assume now that Y is Hausdorff. If f, g ∈ C(X, Y ) and there is x ∈ X such that
f(x) 6= g(x), then we can find disjoint open neighbourhoods Uf of f(x) and Ug of f(g).
Then f ∈ W ({x}, Uf ) and g ∈ W ({x}, Ug) and W ({x}, Uf ) ∩W ({x}, Ug) = ∅, which proves
that C(X, Y ) is Hausdorff.
(T3) Now assume that Y is T3. To show that C(X, Y ) is regular it will suffice to show for
any basic open neighbourhood W ⊆ C(X, Y ) of a given map f , there is another basic open

subset W ′ ⊆ W ⊆ C(X, Y ) such that f ∈ W ′ and W
′ ⊆ W .

First consider the case that W is subbasic. That is, that there exists a compact subset
K ⊆ X and an open subset U ⊆ Y such that W = W (K,U). Then we have f(K) ⊆ U ,
and since Y is regular we can find an open subset V such that f(K) ⊆ V and V ⊆ U . In
particular this gives us that f ∈ W (K,V ) ⊆ W (K,V ) ⊆ W (K,U).

Next we show that W (K,V ) ⊆ W (K,V ). To this end, let g ∈ W (K,V )c. This means
that there exists a point x ∈ K such that g(x) 6∈ V and also that g ∈ W ({x}, Y \ V ). In
particular W ({x}, Y \ V ) ∩W (K,V ) = ∅, so W ({x}, Y \ V ) is an open neighbourhood of
g disjoint from W (K,V ), showing that g 6∈ W (K,V ). It follows from this that W (K,V ) ⊆
W (K,V ).

Finally we prove the case that W is basic. Let K1, . . . , Kn ⊆ X be compact and
U1, . . . , Un ⊆ Y open such that f ∈ W =

⋂
i=1,...,nW (Ki, Ui). For each i = 1, . . . , n take

W (Ki, Ui) and repeat the previous steps to find an open subset Vi ⊆ Ui with f ∈ Vi and

V i ⊆ Ui. Then W (Ki, Vi) ⊆ W (Ki, V i) for each i = 1, . . . , n, and f ∈
⋂
i=1,...,nW (Ki, Vi) ⊆⋂

i=1,...,nW (Ki, Vi) ⊆
⋂
i=1,...,nW (Ki, Ui), which is what we needed to show.

The following lemma is handy in particular when X, Y are metric spaces.

Lemma 3.11 Let X be a Hausdorff space and Y a space. If U is a subbase for the topology
on Y , then the family

W = {W (K,U) | K ⊆ X compact, U ∈ U} (3.28)

is a subbase for the compact-open toplogy on C(X, Y ).

Proof It suffices to show that the subbasic open sets in the compact-open topology are open
in the topology on C(X, Y ) which is generated by the subbasisW . Thus let V ⊆ Y be open,
K ⊆ X compact, and consider W (K,V ). We will construct a suitable open neighbourhood
for a given map f ∈ W (K,V ).

12



To begin notice that since U is a subbasis for Y there is a family of open sets {Wa ⊆ Y }a∈A
such that V =

⋃
a∈AWa and each Wa is an intersection of finitely many sets in U . Since

f(K) ⊆ V , the sets f−1(Wa) cover K. Since X is Hausdorff, the compact subset K is
regular, so if x ∈ K ∩ f−1(Wa), then there is an open set Ux ⊆ K such that x ∈ Ux ⊆
Ux ⊆ K ∩ f−1(Wa). Notice that each Ux is compact. Now the open sets Ux cover K, so by
compactness we can find finitely many U1, . . . , Un whose union contains K. Let W1, . . . ,Wn

be the corresponding opens of Y , so that Ui ⊆ f−1(Wi) for each i. This gives f ∈ W (U i,Wi)
for each i.

Next, for each i = 1, . . . , n we can finitely many subbasic sets Vi1, . . . , Vimi
∈ U such that

Wi =
⋂mi

j=1 Vij. This gives

f ∈
n⋂
i=1

mj⋂
j=1

W (U i, Vij) =
n⋂
i=1

W (U i,Wi) ⊆ W (K,
⋃
i

Wi) ⊆ W (K,V ). (3.29)

The intersection on the left is open in the topology on C(X, Y ) which is generated byW , so
this inclusion is exactly what we were looking for.

Proposition 3.12 The following statements hold.

1) If {Xi}i∈I is a collection of spaces and Y is a space, then the canonical map C(
⊔
I Xi, Y )

∼=−→∏
I C(Xi, Y ) is a homeomorphism.

2) If X is a space and {Yi}i∈I a family of spaces, then the canonical map C(X,
∏
I Yi)→∏

C(X, Yi) is a continuous bijection. If X is locally compact, then this map is a
homeomorphism.

Proof 1) The canonical map is induced by the family of inclusions Xi ↪→
⊔
I Xi, so is

continuous by Pr. 3.4, and is bijective by the universal property of the coproduct. Since
the compact subsets of

⊔
I Xi are disjoint unions of finitely many compact subsets Ki ⊆ Xi,

we see using Le. 3.1 that C(
⊔
I Xi, Y ) has a subbase given by the sets W (Ki, U), where

Ki ⊆ Xi is compact and Ui ⊆ Y is open. Clearly these sets get sent to subasic open sets in∏
I C(Xi, Y ). Thus the canonical map is open and bijective.

2) The canonical map is induced by the projections pri :
∏
I Xi → Xi, so is continuous by

Pr. 3.4, and is bijective by the universal property of the product. In the case that X is
locally compact we get a continuous inverse by taking the adjoint of the composition

X ×
∏
i∈I

C(X, Yi)
∆×1−−→

(∏
i∈I

X

)
×

(∏
i∈I

C(X, Yi)

)
∼=−→
∏
i∈I

(X × C(X, Yi)) (3.30)

∏
ev−−→
∏
i∈I

Yi

where ∆ is the diagonal.

Remark If X is a discrete space, then Pr. 3.12 gives a homeomorphism C(X, Y ) ∼=
∏

x∈X Y .
�
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